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Introduction

The linear Hawaiian Archipelago has hosted extensive 
research into genetic connectivity patterns across a variety 
of taxonomically and ecologically diverse species (e.g., Eble 
et al. 2009; Andrews et al. 2010; Gaither et al. 2010; Skill-
ings et al. 2011; Timmers et al. 2011; Coleman et al. 2014; 
Iacchei et al. 2014; Tenggardjaja et al. 2016). This research 
has cumulated in several metanalyses that aimed to iden-
tify common barriers to dispersal across the archipelago 
(Toonen et al. 2011), assess how life history traits influence 
population genetic structure (Selkoe et al. 2014), and reveal 
that high coral cover harbors the greatest genetic diversity 
(Selkoe et al. 2016). The methodology for these studies was 
the use of a targeted loci approach, which in some of the 
earlier cases relied on a single mtDNA marker.

During the past decade, the field of population genet-
ics has steadily shifted toward high-throughput sequencing 
due in part to a reduction in cost and the ability to generate 
thousands of loci (Wetterstrand 2019; Kraft et al. 2020). The 
higher resolution provided by thousands of loci can reveal 
genomic trends and patterns that could not be detected using 
a targeted loci approach. For example, we now have the abil-
ity to detect discrete patterns of divergent selection (Jans-
son et al. 2020), can accurately describe adaptive radiations 
among shallow genetic divergences (Keller et al. 2013), have 
improved accuracy for genotyping lineages (Bongaerts et al. 
2021), have increase ability to detect fine-scale population 
structure (Kraft et al. 2020), and greater ability to relate 
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genomic trends to the ecology of the organism (Gaither et al. 
2015).

Acanthurus triostegus, locally known as manini (fam-
ily Acanthuridae), has a broad Indo-Pacific distribution, 
although the Hawai‘i and Johnston Atoll population is rec-
ognized as a sub-species (A. triostegus sandvicensis) based 
on diagnostic differences in coloration and morphology 
(Randall 1961, 2007). This species has a relatively long 
pelagic larval stage of ~ 54–77 days, a possible indicator of 
high dispersal ability. The single study that investigated con-
nectivity of manini within Hawai‘i used allozymes to reveal 
population structure between Hawai‘i Island and O‘ahu 
(Planes and Fauvelot 2002). However, studies in other parts 
of the range have provided conflicting patterns of dispersal. 
In Northern Australia, manini had no significant (mtDNA) 
population structure across the Torres Strait (Mirams et al. 
2011), a known biogeographic barrier (Voris 2000). In con-
trast, allozyme analyses revealed population structure across 
various spatial scales ranging from adjacent islands to a 
range-wide assessments (Planes 1993; Planes et al. 1998; 
Planes and Fauvelot 2002).

The Hawaiian Archipelago is characterized by high end-
emism in marine fishes (Briggs and Bowen 2012; Toonen 
et al. 2016), and it has been previous hypothesized that 
endemic Hawaiian reef fishes are descendants of poor dis-
persers that could not maintain genetic connectivity with a 
source population (Hourigan and Reese 1987; Eble et al. 
2009). The subspecies distinction of Hawaiian A. trioste-
gus sandvicensis, an otherwise widely distributed and pre-
sumanbly highly dispersive species, provides an opportunity 
to assess patterns of connectivity for a species that exhib-
its characteristics of both low and high dispersal potential, 
and gain insight into the utility of species distributions 
as an indicator of dispersal potential (e.g., Gaither and 
Rocha 2013). Additionally, this is the first analysis using a 
genomic approach (restriction site associated DNA sequenc-
ing, RADseq), to assess connectivity across the Hawaiian 
Archipelago for a common coral reef fish. The genomics 
approach provides a more powerful tool to reveal fine-scale 
patterns of connectivity thereby allowing us to make com-
parisons against previously defined genetic breaks across 
the archipelago.

Although RADseq studies have revealed fine-scale 
population structure not observed using a targeted locus 
approach, we caution that this study has limited applica-
tions in such a comparative framework. The single previ-
ous study demonstrating manini population structure in 
Hawai‘i was limited to two islands (Planes and Fauvelot 
2002), and these locations (Hawai‘i Island and O‘ahu) were 
subsequently shown to harbor isolated populations among 
a multitude of diverse marine species (Toonen et al. 2011). 
Additionally, the numerous connectivity surveys based on a 
targeted loci approach across the Hawaiian Archipelago are 

our analytical baseline to compare against our results which 
are based in a genomics framework. With this in mind, we 
further ask whether the first genomic survey is concordant 
with population partitions observed in coral reef-associated 
species surveyed with a targeted loci approach, and whether 
additional populations partitions are observed that may indi-
cate increased population resolution.

Material and methods

Taxon sampling and DNA extraction

Between 2003 and 2006, 461 tissue samples (primarily 
fin clips) of manini from 10 locations were collected from 
across the Hawaiian Archipelago including islands in the 
Main Hawaiian Islands (Hawai‘i Island, Maui, O‘ahu, and 
Kaua‘i), the Northwestern Hawaiian Islands (French Frigate 
Shoals, Maro Reef, Pearl and Hermes Atoll, Midway Atoll, 
and Kure Atoll), and Johnston Atoll using pole spears with 
SCUBA or snorkeling (Table 1; Fig. 1). Multiple collections 
occurred around each island and were grouped together, 
including across different years, to obtain a genetic signature 
for each sample location. Tissues were preserved in salt-
saturated DMSO buffer (Amos and Hoelzel 1991) and stored 
at room temperature. Genomic DNA was extracted using 
Omega Bio-Tek E-Z 96® Tissue DNA Kit (Norcross, GA, 
USA) following the manufacturers protocol and resuspended 
in nanopure water. High molecular weight was confirmed by 
visualizing on a 1.5% agarose gel with GelRed® (Biotium, 
Inc. Fremont, CA, USA).

Library preparation and sequencing

RADseq library preparation and sequencing were con-
ducted by the Genomics Core Laboratory at Texas A&M 
Corpus Christi, starting with 150 ng of high-molecular 
weight genomic DNA per sample and following the 
double-digest RAD (ddRAD) protocol (Peterson et al. 
2012). Briefly, this process included digesting each 
sample with Mspl and EcoRI (New England Biolabs, 
Ipswich, MA, USA) followed by cleaning with PEG solu-
tion using magnetic beads. Samples were then normalized 
to the same concentration followed by ligation of adapt-
ers. After digestion and ligation, a PCR was performed 
using dual-indexed primers. Fragments of between 325 
and 400 bp were selected using BluePippin (Sage Sci-
ence, Beverley, MA, USA), and a Fragment Analyzer 
was used to visualize library size range followed by a 
qPCR to determine molarity of libraries. The resulting 
libraries were sequenced on an Illumina HiSeq® 4000 
(150 paired-end reads, performed by NYU Langone 
Health Genome Technology Center). Sequence data for 
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the samples were demultiplexed based on the barcodes 
from the adapters using process_radtags (Catchen et al. 
2013). Individual libraries were sequenced across two 
or three independent runs to increase the number of 
sequence reads for each sample and to ensure congruence 

in nucleotide assignments. Fastq sequences were deposited 
in NCBI’s Sequence Read Archive (accession numbers: 
SAMN27733595-27734046), and the associated metadata 
are available at GEOME (Deck et al. 2017).

Table 1   Molecular diversity 
indices for populations 
of Acanthurus triostegus 
sandvicensis based on 3649 
SNPs

Number of individuals sequenced (n), average number of alleles per locus (Na), effective number of alleles 
(Neff), Observed heterozygosity (HO), heterozygosity between populations (HS), total heterozygosity (HT), 
and inbreeding coefficient (GIS) are presented

Sample location n Na Neff HO HS HT GIS

Main Hawaiian Islands
Hawai‘i 56 1.340 1.054 0.047 0.037 0.037 − 0.251
Maui 76 1.281 1.046 0.040 0.031 0.031 − 0.281
O‘ahu 96 1.453 1.055 0.048 0.039 0.039 − 0.248
Kaua‘i 75 1.461 1.061 0.050 0.043 0.043 − 0.176
Northwestern Hawaiian Islands
French Frigate Shoals 15 1.195 1.056 0.050 0.038 0.038 − 0.318
Maro Reef 34 1.325 1.055 0.049 0.038 0.038 − 0.284
Pearl and Hermes 28 1.287 1.054 0.048 0.037 0.037 − 0.293
Midway 29 1.308 1.056 0.051 0.039 0.039 − 0.299
Kure 8 1.168 1.067 0.055 0.045 0.045 − 0.217
Johnston 34 1.303 1.055 0.047 0.038 0.038 − 0.253
All locations 451 1.312 1.056 0.049 0.039 0.039 − 0.262

Fig. 1   Collection locations and sample sizes of Acanthurus trioste-
gus sandvicensis in parentheses. Solid line indicates the regions of 
the Main Hawaiian Islands and the Northwestern Hawaiian Islands 
which, in 2006, was designated the Papāhanaumokuākea Marine 

National Monument. Filled darker areas represent current coastlines 
while light areas represent the maximum historical above-water 
island area. Photo credit: Keoki Stender 
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Genotyping and de novo assembly of RADseq libraries

Raw reads obtained from Illumina runs were assessed for 
sequence quality using FastQC 0.10.1 (Andrews 2010), to 
remove low-quality bases (Phred quality score threshold of 
30). As a reference genome is not available for A. triostegus, 
a de novo reference catalog was assembled using Rainbow 
2.0.4 (Chong et al. 2012) as performed in the dDocent pipe-
line (Puritz et al. 2014a, 2014b) using a minimum depth of 
15 and maximum of eight mismatches to form reference con-
tigs. The reference contigs were clustered based on a 75% 
similarity threshold. After generating the reference catalog, 
reads were mapped using bwa 0.7.17 (Li and Durbin 2009) 
and SNP detection was performed using FreeBayes 1.10.54 
(Garrison and Marth 2012). Variant calls were subjected 
to several filtering steps to reduce false positives. The data 
set was filtered to remove all genotypes with < 5 reads per 
individual. SNPs were retained if they were genotyped in 
95% of individuals, had a minor allele count of 3 or higher, 
an average depth of less than 20, and a minor allele fre-
quency of 0.05. Using the –thin function in vcftools 0.1.12a 
(Danecek et al. 2011) and setting it to maximum contig size, 
we retained only the first SNP found along a contig. Using 
vcftools, we removed SNPs that were not in Hardy–Wein-
berg Equilibrium. SNPs below the significance threshold 
value (P = 0.01) were excluded from the dataset.

Population genetic analyses

genodive 2.0b27 (Meirmans and Van Tienderen 2004) was 
used to generate genetic diversity indices, as well as to test 
for population structure. Genetic structure among sample 
locations was evaluated with an analysis of molecular vari-
ance (AMOVA) in arlequin 3.5.1.2 (Excoffier et al. 2005). 
Deviations from null distributions were tested with nonpar-
ametric permutation procedures (N = 9999). Pairwise FST 
statistics were generated to assess genetic structure between 
locations. False discovery rates were controlled for and 
maintained at α = 0.05 among all pairwise tests (Benjamini 
and Yekutieli 2001; Narum 2006). Given the potential for 
population structure within the larger high islands, speci-
mens from the east and west side of the islands of Hawai‘i 
Island, Maui, and O‘ahu were initially analyzed as separate 
sample sites, but no genetic differentiation was identified. 
The results presented here combined all specimens from 
both sides as a single island population.

We used three approaches to explore population struc-
ture indicated by AMOVA. First, genetic partitioning was 
assessed using structure 2.3.2 (Pritchard et al. 2000), a 
Bayesian method that estimates ancestry and categorizes 
individuals into discrete populations. The simulation was 
run for 1 million generations with the first 100,000 discarded 
as burn-in. Five replicates of each simulation from K = 1 to 

10 genetic clusters were run. We determined the most likely 
number of genetic clusters (K) using structure harvester 
0.6.93 (Earl and von Holdt 2012). structure results were 
analyzed using the online tool clumpak (http://​clump​ak.​tau.​
ac.​il/​index.​html) (Kopelman et al. 2015) which integrates the 
program clumpp 1.1.2 (Jakobsson and Rosenberg 2007) and 
minimizes the variance across all iterations. clumpak then 
created the final visualized output. Second, the genetic rela-
tionship among populations was resolved with a Principle 
Component Analysis (PCA) implemented using genodive 
and following a covariance transformation matrix. Finally, 
we conducted a Discriminant Analysis of Principal Com-
ponents (DAPC), a hybrid linear discriminant analysis of 
principal components, using the R package ‘Adegenet’ 2.2.1 
(Jombart 2008). Since PCA analyses require no missing data 
(and DAPC uses PCA), we replaced missing data with the 
mean allele frequency for each locus using the function 
scaleGen, a function of Adegenet. Following the cross-vali-
dation algorithm using 500 iterations, we retained the first 20 
principal components and three discriminant function, using 
the population label as the dependent variable. DAPC differs 
from PCA analyses in that while PCA analyses search for 
the direction of largest total variance, DAPC maximizes the 
separation between groups while minimizing within group 
variation (Jombart et al. 2010).

Testing the direction of gene flow between Johnston 
Atoll

Johnston Atoll is the closest shallow habitat to Hawai‘i, 
many endemic species are shared between the two regions 
(Randall 2007), and so Johnston is considered part of the 
Hawaiian biogeographic province (Toonen et al. 2016). To 
examine the direction and magnitude of gene flow between 
Johnston Atoll and Hawai‘i, migration rates among islands 
were calculated using the same SNP dataset as above in 
migrate-n (Beerli and Felsenstein 2001; Beerli 2006). Our 
initial results found many of the island in the NWHI (French 
Frigate Shoals, Maro Reef, Pearl and Hermes, Midway) and 
a single population in the MHI (O’ahu) showed no structure 
with Johnston Atoll, indicating that these islands are likely 
nodes for colonization into or out of Hawai’i. With this in 
mind, we set the migrate-n model assuming all these popula-
tions in the analysis had equal exchange of migrants (pan-
mictic). During the migrate-n run, 5,000,000 steps were 
sampled and recorded every 1000 steps under a constant 
mutation rate model, with the first 1,000,000 steps discarded 
as burn-in. Several test runs were conducted following a 
Bayesian search strategy to determine the appropriate prior 
values for the parameters θ (four times effective population 
size multiplied by mutation rate per site per generation, 
4Neµ) and M (immigration rate divided by the mutation rate, 
m/µ). In the final analyses, we set the mean prior values 

http://clumpak.tau.ac.il/index.html
http://clumpak.tau.ac.il/index.html
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to 0.05 for θ and 500 for M in both directions. During the 
migrate-n run, 5,000,000 steps were sampled and recorded 
every 1000 steps under a constant mutation model, with the 
first 1,000,000 steps discarded as burn-in. After checking for 
data convergence, the mode and 95% percentiles of θ and M 
were used to calculate the effective migrants per generation 
(Nem = (M* θ)/4).

Results

After the initial trimming, filtering, and demultiplexing, we 
retained 80,955 loci. Following a second filtering step which 
accounted for coverage, minimum allele frequency, presence 
among individuals in the dataset, retaining one SNP per con-
tig, and excluding loci out of HWE, we identified 3649 loci 
that met all the criteria for downstream analyses.

Molecular diversity indices are summarized in Table 1. 
The number of alleles present in all populations ranged from 
1.17 to 1.46 at Kure and Kaua‘i with an average of 1.31 
across all populations. The effective number of alleles was 
similar across locations and ranged from 1.05 to 1.07 with an 
average of 1.06 across all populations. Total heterozygosity 
ranged from 0.031 at Maui to 0.045 at Kure with an aver-
age of 0.039 across all populations. Inbreeding coefficients 
revealed that the influence of inbreeding is negligible across 
all populations.

Population pairwise FST values are summarized in 
Table 2. In the main Hawaiian Islands (MHI), prior to 
correction for false discovery rates, population structure 
was found to be significant between all islands. After cor-
recting for false discovery rates (corrected α = 0.009) the 
highest differentiation was observed between Hawai‘i 

Island and O‘ahu (FST = 0.071, P < 0.001); however, 
Hawai‘i Island no longer was differentiated from Kaua‘i, 
the only pairwise comparison that lost significance after 
applying the correction. In the Northwestern Hawaiian 
Islands (NWHI), all islands except Kure (the furthest NW 
island) grouped with Johnston Atoll to form one panmictic 
population. Kure was differentiated from the other NWHI 
with the greatest differentiation between Kure and Pearl 
and Hermes (FST = 0.070, P < 0.001). When comparing 
between the MHI and the NWHI, O‘ahu was not signifi-
cantly differentiated from Johnston Atoll and the islands 
in the NWHI with the exception of Kure (FST = 0.073, 
P < 0.001). Kure showed significant differences from 
Maui (FST = 0.057, P < 0.001) but was not differentiated 
from Hawai‘i Island or Kaua‘i. Johnston Atoll also showed 
significant differentiation from Hawai‘i‘Island, Maui, and 
Kaua‘i. The AMOVA found significant differences among 
populations overall (FST = 0.033, P < 0.001; Table 3).

Table 2   Matrix of pairwise 
FST statistics for 10 populations 
of Acanthurus triostegus 
sandvicensis based on 3649 
SNPs

Bolded numbers indicate significance at P < 0.05. Italicized numbers indicate significance after controlling 
for false discovery rates at α = 0.05 (per Narum 2006). The corrected α = 0.009. Owing to low sample size 
Ni‘ihau has been excluded from the analysis
Hawai‘i Island, HAW; Maui, MAU; O‘ahu, OAH; Kauai, KAU; French Frigate Shoals, FFS; Maro Reef, 
MARO; Pearl and Hermes Atoll, PH; Midway Atoll, MID; Kure Atoll, KUR; Johnston Atoll, JOH

Main Hawaiian Islands Northwestern Hawaiian Islands

HAW MAU OAH KAU FFS MARO PH MID KUR

HAW –
MAU 0.026 –
OAH 0.071 0.043 –
KAU 0.007 0.022 0.051 –
FFS 0.054 0.043 < 0.001 0.048 –
MARO 0.054 0.038 0.006 0.053 < 0.001 –
PH 0.048 0.033 0.004 0.044 < 0.001 < 0.001 –
MID 0.048 0.026 0.002 0.045 < 0.001 < 0.001 < 0.001 –
KUR 0.005 0.057 0.073 < 0.001 0.064 0.065 0.070 0.065 –
JOH 0.065 0.050 0.001 0.060 < 0.001 < 0.001 0.005 0.002 0.076

Table 3   Results of the analysis of molecular variance (AMOVA) 
based on 3649 SNPs for Acanthurus triostegus sandvicensis 

Bolded values denote significance at P < 0.05

Source of vari-
ation

F-statistic % variation F-value SD P value

Within individual FIT 1.214 − 0.214 0.04 –
Among individual FIS − 0.248 − 0.256 0.041 1.000
Among popula-

tion
FST 0.033 0.033 0.008 0.001
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Population clustering

The structure analysis recovered two clusters (Fig.  2, 
Table  S1; K = 2, Mean Ln P(K) = − 32,588.04; second 
closest). The analysis found one population consisting of 
Hawai‘i,‘Maui, Kaua‘i, and Kure, and a second population 
consisting of the remaining islands in the NWHI, O‘ahu, and 
Johnston Atoll. Various levels of admixture were observed 
in all locations. The cluster of k = 3 recovered patterns con-
sistent with the two clusters recovered for K = 2 (Fig. S1; 
K = 3, Mean Ln P(K) = − 32,504.16). The PCA revealed 
two distinct clusters similar to what was observed in the 
structure results: one cluster consisting of Hawai‘i, Maui, 
Kaua‘i, and Kure and a second cluster consisting of the 
remaining islands in the NWHI, O‘ahu, and Johnston Atoll 
(Fig. 3). The two distinct clusters are more apparent when 
the PCA was grouped by individuals (Fig S2) and can also 
be observed in the DAPC analysis results, which aggregates 
genetically similar population together (Fig S3).

Estimation of migration rates

Migration estimates determined by the migrate-n analysis 
ranged from 23.6 (French Frigate Shoals to Johnston Atoll) 
to 47.0 (Pearl and Hermes to French Frigate Shoals) effec-
tive number of migrants per generation (Table S2). The aver-
age movement among islands was 30.3 migrants per genera-
tion. The strongest rate of migration from Johnston Atoll to 
the Hawaiian Archipelago was observed between Johnston 
Atoll and French Frigate Shoals (Nem = 32.8). O’ahu was 
found to have the highest rates of migration to Johnston Atoll 
among the MHI (Nem = 34.2).

Discussion

Patterns of dispersal across the archipelago

Studies of connectivity along the Hawaiian Archipelago 
have added to our understanding on how dispersal patterns 
are shaped and how biodiversity is exchanged in the marine 
realm. The results of this study corroborate previously iden-
tified patterns of connectivity. However, this analysis also 
revealed novel patterns, presumably based on increased 

sampling and genomic coverage, which can change our 
understanding of dispersal dynamics in the Hawaiian bio-
geographical province.

Among the previous patterns corroborated with SNP 
data, allozyme analysis of manini had revealed structure 
between Hawai‘i Island and O‘ahu (Planes and Fauvelot 
2002). The multi-species genetic breaks identified by 
Toonen et al. (2011) found that most islands in the MHI 
are distinct at a population level, a pattern consistent with 
our findings for manini (Table 2). Along the rest of the 
range through the NWHI, our observation of higher con-
nectivity is generally concordant with trends observed 
with targeted loci in other species. We recovered a highly 
connected population extending up the NWHI from French 
Frigate Shoals to Midway Atoll that also includes Johnston 
Atoll. However, in most species surveyed to date, the fur-
thest northwestern genetic break was found between Mid-
way Atoll and Pearl & Hermes (Toonen et al. 2011). The 
results of our study also found a break further northwest 

Fig. 2   STRU​CTU​RE bar plot (K = 2) for Hawaiian populations of 
Acanthurus triostegus using 3649 SNPs. Abbreviations: Hawai‘i, 
HAW; Maui, MAU; O‘ahu, OAH; Kaua‘i, KAU; French Frigate 

Shoals, FFS; Maro Reef, MAR; Pearl and Hermes Atoll, PH; Midway 
Atoll, MID; Johnston Atoll, JOH; Kure Atoll, KUR

Fig. 3   Scatter diagram based on Principal Components Analysis 
between Hawaiian populations of Acanthurus triostegus sandvicen-
sis using 3649 SNPs. Abbreviations: Hawai‘i, HAW; Maui, MAU; 
O‘ahu, OAH; Kaua‘i, KAU; French Frigate Shoals, FFS; Maro Reef, 
MAR; Pearl and Hermes Atoll, PH; Midway Atoll, MID; Johnston 
Atoll, JOH; Kure Atoll, KUR
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between Midway Atoll and Kure. Nonetheless, previous 
studies revealed a recurring pattern of highly connectivity 
in the middle of the archipelago (e,g., from Nihoa to Pearl 
and Hermes) (e.g., Eble et al. 2009, 2011b; Andrews et al. 
2014; Tenggardjaja et al. 2016, 2018).

The high connectivity of manini between Johnston Atoll 
and the archipelago is a pattern documented in other reef 
fish species (Ramon et al. 2008; Craig et al. 2010; DiBat-
tista et al. 2011; Fernandez-Silva et al. 2015). Johnston 
Atoll is the nearest land mass to the Hawaiian Archipel-
ago, 885 km southwest of French Frigate Shoals, and is 
included in the Hawaiian biogeographic province based on 
high faunal similarity. Many endemic Hawaiian reef fishes 
are found there (Randall 2007; Briggs and Bowen 2012), 
and it is likely a stepping stone for Indo-Pacific biodiver-
sity to colonize into Hawai‘i (Bowen 2016). Johnson Atoll 
has been implicated as the source of propagules (larvae) 
found in the middle of the archipelago (Rivera et al. 2004; 
Gaither et al. 2011; Andrews et al. 2014) and this theme is 
supported by our findings of net migration from Johnston 
Atoll into the NWHI (Table S2). Dispersal from Johnston 
Atoll into the archipelago is further supported by biophysi-
cal models. Kobayashi (2006) identified two potential cor-
ridors into the archipelago from Johnston Atoll for species 
with PLDs greater than 40 days—one being French Frig-
ate Shoals. Dispersal out of Hawai‘i generally occurs in a 
westward trajectory toward Japan rather than a southernly 
trajectory toward Johnston Atoll (Eble et al. 2011b). Here, 
we find dispersal of manini out of Hawai’i follows a south-
ern trajectory from O’ahu to Johnston Atoll.

We observed no significant population partitions 
between O’ahu and the NWHI, and no significant popu-
lation partitioning between the broader MHI (excluding 
O‘ahu) and Kure (Table 2, Fig. 2). This pattern of genetic 
connectivity between the ends of the archipelago, to the 
exclusion of intermediate habitats, makes little geographic 
sense and has bedeviled genetic assessment of other spe-
cies (e.g., Gaither et al. 2011). However, this pathway 
begins to make sense in light of a potential pathways of 
larval transport from O’ahu to Johnston Atoll, which is 
known to export propagules in the NWHI. In this scenario, 
Johnston Atoll acts as a conduit for connectivity between 
O’ahu and the middle of archipelago. It is not clear what 
biological or physical drivers could facilitate this pat-
tern, although it is consistent with a previous population 
assessment of the sea cucumber, Holothuria atra, which 
indicated net export from the Hawaiian Archipelago to 
Johnston Atoll (Skillings et al. 2011). The other notable 
difference from previous studies is the shift in the most 
northwestern genetic break to between Midway and Kure. 
Other than these anomalous patterns, the results of our 
study are mostly consistent with patterns shared across 
multiple species (Toonen et al. 2011), including the large 

expanse of genetic homogeneity found among the atolls 
and low islands in the middle of the archipelago.

Factors influencing dispersal

Hawaiian manini are a subspecies (A. triostegus sandvicen-
sis) endemic to Hawaii and Johnston Atoll (Randall 1961, 
2007) which may provide insight into their dispersal capabil-
ities. Previous researchers have hypothesized that endemic 
Hawaiian reef fishes are descendants of poor dispersers 
(Hourigan and Reese 1987; Eble et al. 2009); after a rare 
colonization event into Hawai‘i they were unable to main-
tain connectivity with the parent population in the Central 
Pacific. However, research on manini in Australia indicated 
that seascapes rather than dispersal potential had a larger 
influence on genetic patterns (Liggins et al. 2016). Nonethe-
less, interspecific patterns vary and studies that have investi-
gated population structure of endemic Hawaiian reef fishes, 
including groupers, damselfish, and surgeonfishes, have 
shown that endemic species have higher levels of popula-
tion structure across the archipelago, relative to widespread 
species (Rivera et al. 2004; Ramon et al. 2008; Eble et al. 
2009; Tenggardjaja et al. 2018). An exception to this pattern 
are the three endemic butterflyfishes which were all found to 
be genetically homogenous across their distribution (Craig 
et al. 2010). For widespread Indo-Pacific species, very little 
to no population structure is observed across the archipelago 
(Craig et al. 2007; Eble et al. 2009, 2011a; Reece et al. 2010; 
DiBattista et al. 2011; Andrews et al. 2014).

The population structure of manini has traits that are 
intermediate between the expectations for endemic versus 
widespread species. Population structure is observed across 
the MHI and Kure, but with genetic homogeneity across 
the remainder of the NWHI and Johnston Atoll. Research 
based on allozymes, which characterized genetic structure 
of manini across the entire Indo-Pacific range, found that the 
Hawaiian population was genetically distinct from the rest 
of the range, albeit with FST values that indicate an isolated 
population rather than a deep evolutionary (and taxonomic) 
designation (Planes and Fauvelot 2002). A genomic SNP-
based survey across the entire Indo-Pacific range of manini 
would be necessary to properly characterize the evolutionary 
distinction of the Hawaiian color morph.

These contrasting patterns of genetic homogeneity across 
large expanses and population structure across relatively 
short distances have been demonstrated elsewhere in the 
range of manini. Population structure has been documented 
within the Polynesian Archipelago, on either side of the Tor-
res Strait (Liggins et al. 2016), and even within the lagoon 
at New Caledonia, based on allozyme analyses (Planes et al. 
1996, 1998). However, manini have also maintained genetic 
connectivity across vast expanses of the Indo-Pacific (Planes 
and Fauvelot 2002; Mirams et al. 2011). Grulois et al. (2020) 
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reported a break only on the scale of Indian and Pacific pop-
ulations based on microsatellites. To further confound our 
attempts at generalization, recent evidence from a parent-
age analysis conducted on O‘ahu found that the majority 
of manini larvae settle less than 30 km from their spawn-
ing grounds, even in the face of strong currents (Coleman 
et al., submitted). Based on these contrasting patterns, the 
dispersal ability of manini is clearly not static and is likely 
influenced by a variety of abiotic and biotic factors.

Habitat preference and larval behavior are known to play 
a key role in dispersal and settlement queues (Jones 2015). 
The ecosystem of the MHI differs greatly from the relatively 
pristine ecosystem of the NWHI, which was designated as 
the Papahānaumokuākea Marine National Monument in 
2006, thereby limiting anthropogenic influences. The MHI 
are made of up of high islands with steady freshwater run 
off that transport nutrients into surrounding water, whereas 
the older NWHI consists of low islands, atolls, and oligo-
trophic waters. The human impact in the MHI has also led 
to degraded reefs, overfishing, and pollution, among other 
pressures that have distorted natural processes in this region 
(Bahr et al. 2015; Wedding et al. 2018). Many species that 
are common in the NWHI are rare or unknown in the MHI 
such as Acropora corals (Grigg et al. 1981) as well as many 
endemic fishes (Kosaki et al. 2017). Intriguingly, the area 
of genetic homogeneity in the NWHI has high concordance 
with a community cluster based on the numerical abundance 
of endemic and non-endemic fish species (Friedlander et al. 
2020). The area of ecological homogeneity corresponds 
approximately to the area of genetic homogeneity.

Since juvenile and adult stages are relatively sedentary, 
the key to understanding higher connectivity in the NWHI 
must focus on larvae. Considering the geological, oceano-
graphic, and trophic conditions, we posit three non-exclusive 
hypotheses:

(1)	 Larvae might disperse more in oligotrophic waters of 
the NWHI, because of low food supply and/or longer 
time to become competent for settlement. This might be 
resolvable by examining otolith growth rings in newly 
settled recruits in the MHI versus NWHI.

(2)	 High islands may be an easier target for larvae to find. 
Freshwater runoff, louder ambient noise, and higher 
nutrient load could provide cues for larvae to navigate, 
recruit, and settle. This might be resolvable with behav-
ioral studies.

(3)	 High islands may provide protection from regional cur-
rents, a bit of ’shade’ with meandering eddies that pro-
mote local recruitment. This might be resolvable with 
fine-scale biophysical models.

While these hypotheses merit further consideration, the 
geological and ecological difference between the NWHI and 

MHI does not seem to explain why O‘ahu manini shows 
high connectivity with the NWHI or why Kure shows con-
nectivity with the MHI. While a pathway through Johnston 
Atoll is an intriguing new possibility, the underlying fac-
tors promoting or inhibiting dispersal across the archipelago 
remain elusive.

Conclusions

As the field of population genetics continues to evolve, a 
suite of tools are becoming available to evaluate patterns 
of connectivity on a genomic scale (Germer et al. 2000; 
Andrews and Luikart 2014; Puritz et al. 2014b). The expo-
nential increase in data will continue to revolutionize our 
ability to identify factors that influence a range of processes 
from population connectivity to species divergence, includ-
ing ecological important traits (Hohenlohe 2014), historic 
role of hybridization in shaping biodiversity (Meier et al. 
2017), genetic basis for species interactions and adapta-
tion (Allendorf et al. 2010; Hohenlohe et al. 2010), among 
others.

The utility of targeted marker analysis is not diminished 
and can effectively be used in concert with genomic data 
to describe evolutionary and contemporary patterns of con-
nectivity, along with the associated mechanisms facilitating 
these patterns (Gaither et al. 2015). As we move forward in 
assessing connectivity across the Hawaiian Archipelago, it 
may be worthwhile to revisit some of the studies that used 
targeted loci and integrate them with a genomics perspec-
tive to uncover contemporary patterns of dispersal and iden-
tify the mechanisms that shaped the evolution of Hawai‘i’s 
unique biodiversity.
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